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selection of E's. The more random starts one makes the 
better the chance of finding the solution! 

Another characteristic of phase developing and 
refining methods, such as the tangent formula or linear 
equations, is that even when wrong phase sets are 
obtained, an E map from the phases will reveal a 
molecular fragment. Particular sets of E's  may relate 
most strongly to particular parts of the structure and if 
the relative phases of the E's  are correctly deduced then 
the corresponding portion of the molecule will be seen 
although it may be incorrectly positioned. 

This is probably the basis of the success of the 
symbolic addition method. If one is prepared to make 
several starts then within a few trials a set of phases 
giving a fragment may be found. With such a fragment 
an extremely efficient process of structure development 
may be initiated (e.g. Karle, 1968). 

It should not be thought that we are saying that all 
structures are solved by a pseudo random approach. 
For simple structures the M U L T A N  development 
process can start from a best set of phases such that as 
the phase development proceeds so the phases being 
developed are close to their correct values. Again, if 
techniques are employed which can give reliable 
estimates for the values of structure-invariant quanti- 
ties, then the complexity of structure for which a 
solution is obtained by a 'non-random' pathway may 
well be greater. 

The question does nevertheless present i tself-  with 
large and fast computers available and with hardware 

such as array processers becoming ever more common 
- how worthwhile is it to develop intricate and subtle 
techniques when a bull-at-the-fence process may be 
enough? 

We are grateful to the Computer Science department 
of the University of York and the Centre de Calcul of 
the University of Louvain for the generous provision of 
computing facilities. Financial support by the Science 
Research Council and by the British Council is also 
acknowledged. 
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This paper illustrates the potential of Karle-Hauptman determinants for the solution of the phase problem in 
a 'difficult' small structure. An outline of the procedure followed is given. Suggestions for the future are 
presented, together with a discussion of the results obtained. 

I n t r o d u c t i o n  

Efforts to solve small and medium structures (as 
opposed to large protein structures) by direct methods 
have centred on the ~2 relation. Attempts to include 
relations among more than three phases have met with 
some initial success (Gilmore, 1977; Gilmore, Hardy, 
MacNicol & Wilson, 1977; Blank, Rodrigues, Pletcher 

& Sax, 1976; Sax, Rodrigues, Blank, Wood & Pletcher, 
1976). Quartets and quintets have yielded efficient 
criteria for discriminating between solutions obtained 
by ~2-based processes (Schenk, 1973a,b). The em- 
pirical formulae obtained by Schenk have been sup- 
plemented by theory (Hauptman, 1974a,b, 1975a,b; 
Giacovazzo, 1974, 1975; Heinerman, 1975). 

A totally different approach to the problem was 
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much earlier suggested by Karle & Hauptman (1950). 
The method involves the use of the so called Karle- 
Hauptman determinants. 

An important property of the Karle-Hauptman 
determinants has been found by Goedkoop (I 950). He 
demonstrated that the value of the determinant de- 
creases with its order, reaching zero if the order of the 
determinant is greater than the number of independent 
atoms in the unit cell. Tsoucaris (1970a,b) published 
his well-known 'maximum-determinant rule', i.e. the 
most probable set of phases connected with the 
reflexions in a certain Karle-Hauptman determinant 
yields the maximum value of this determinant. The 
meaning of this in terms of ~2, ~3 etc. relations is: all 
possible relations between a set of phases of a certain 
specific group of reflexions must be satisfied as well as 
possible. The relative weights of these relations de- 
crease with the order of the relation by a factor equal to 
E000. The rule has been applied successfully to the 
extension of phases from medium to high resolution in 
the structure determination of proteins (de Rango, 
Mauguen & Tsoucaris, 1975). 

Suggestions have been made to use the method for 
small structures (Woolfson, 1977). We have applied the 
maximum-determinant rule to the structure determina- 
tion of pyrocalciferol (P2 ,  Z = 2 ,  N = 8 6 ) .  The 
structure has been determined by Patterson search 
methods (de Kok & Romers, 1975). The reflexions 
were measured at - 1 7 0 ° C  using Mo K- radiation and 
a graphite monochromator. 4435 intensities were 
recorded, 3302 of which were significant. The maxi- 
mum glancing angle was 29 °. The final weighted R 
value based on the significant reflexions only was 
4.86%. Attempts to use conventional multisolution 
programs have failed, magic integers (White & 
Woolfson, 1975: Declercq, Germain & Woolfson, 
1975) gave about 40% of the structure, enough to solve 
the phase problem. The reason for the difficulties 
encountered in solving this fairly simple structure is the 
breaking down of the ~2 relation for a significant 
number of very strong triple products. However, if a 
sufficiently large number, about 20, of strong reflexions 
are known, tangent refinement does not diverge. 

Building the determinant 

We have developed a routine to build a Karle- 
Hauptman determinant using all the available E values. 
A not significant or unobserved reflexion is assigned the 
value 0. A reflexion lying outside the sphere of 
measurement is assigned the value 1. The program 
attempts to include as many strong reflexions as 
possible, while at the same time keeping the number of 
independent reflexions to a minimum. The weights of 
these conflicting requirements can be varied according 
to specification. In this way we have built a 20 × 20 

determinant containing 79 independent reflexions, 23 of 
which belong to the group of the 200 strongest E's. 

Solving the structure 

The origin was fixed by giving three general reftexions 
their correct phases. Three more reflexions were 
selected from the determinant to act as symbolic 
reflexions (exactly as in the multi-solution procedure). 
The choice of origin-defining and symbolic reflexions 
was made on the basis of the value of E as well a.s the 
number of times the reflexion occurred in the determi- 
nant. The three symbolic reflexions were strongly inter- 
related; moreover, one of the symbols was a special 
reflexion. This is the reason why only four solutions 
had to be tried. All other phases were initially set equal 
to zero. 

The determinant is optimized by the following 
procedure: (1) Origin and symbols are fixed at their 
current values. (2) All other phases in the left upper- 
most 7 × 7 determinant are allowed to vary until 
convergence. (3) A new row and column are added and 
only the new phases (initially set equal to zero) are 
allowed to vary until convergence. (4) Next, the full 
determinant is optimized with respect to the phases; the 
symbols are allowed to vary as well. The determinants 
are optimized using a modified Newton-Raphson 

Table 1. The starting reflexions 

Phases are in millicycles (m.c.): IA(01 --- I~0struct.--~determlnant [, 
IzJq~lav = 80 m.c. 

h k 1 (Pstruct. ~Odetermlnant q/tgref. IAq~l E 

I 1 2* 282 282 280 0 3.62 
10,0_, 2_-I" 500 500 500 0 3.12 
9 1 41" 244 228 200 16 2.72 
0 2 0~ 51 44 897 7 2.34 

i0,2, 2 557 544 526 13 2.11 
6 1 7* 832 832 831 0 2.39 
3,2,11" 580 580 579 0 2.67 
7 0  9 0 0 0 0 1.89 

2 6 134 125 96 9 1.91 
") 9 2 924 778 619 146 1.91 
") 7 2 870 693 761 177 2.14 

8 4 69 986 922 83 2.36 
2 6 2 95 879 16 216 1.90 
2 2 4 525 613 599 88 2.12 
5 7 6 749 793 9 44 2.46 
7 5 :2 153 375 321 222 2.31 
'~ 6 8 256 403 141 147 2.01 

10, !, ~ 350 140 464 210 2.45 
11,2_, 2 537 317 738 220 1.99 
2 1 2 958 52 965 94 2.27 
3 :~ 4 153 267 131 114 2.18 
7 8 zi, 861 872 48 11 1.88 
9 0 6 0 73 500 73 1.83 

* Origin-defining reflexion. 
t Symbol. Starting values of symbols are: 10,0,2 500, 9i~, 220 

follows from 112 and 10,0,2, 020 64 follows from 112. 
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method as supplied by the Nottingham Algorithm 
Group (Ford, 1977). During optimization the determi- 
nant is kept positive-definite. 

The derivatives of the determinants with respect to 
the parameters are evaluated numerically. 

The phases of the 23 strongest reflexions obtained 
from the determinant were used as a starting point for a 
weighted tangent refinement. An E map based on the 
fourth solution contained 41 out of 43 atoms of the 
molecule. The 23 starting phases are listed in Table 1. 
The mean phase error was 80 millicycles before and 
111 millicycles after tangent refinement. 

Discuss ion 

Inspection of Table l shows that while some phases are 
calculated with surprising accuracy others are quite 
wrong. Furthermore it may be argued that by giving 
the three origin-defining reflexions their correct phases 
we have provided the process with a better starting 
point than is generally available in a structure deter- 
mination. The result obtained nevertheless convincingly 
illustrates the potential of the Karle-Hauptman deter- 
minants. 

As Tsoucaris has pointed out, the 'quality of the 
determinant' is the key factor in the process of structure 
determination. The meaning of this term is not 
rigorously defined. Our findings have confirmed 
Tsoucaris's idea that a determinant of high quality will 
have a value as close to zero as is practical, while the 
number of independent phases will be small in relation 
to the order of the determinant. By improving the 
algorithm designed to construct the determinant as well 
as increasing the size of the said determinant the 
problems outlined in the beginning of this section may 
well be avoided. The results we have obtained lead us to 
believe that Karle-Hauptman determinants will play a 
significant role in the determination of structures 
eluding solution by ~2-based processes. 

The future 

We are planning to replace the numerical calculation of 
the derivatives by an analytical one, taking advantage 
of the fact that co det A/COa o : b o det A, where A is a 
general n x n matrix, a o are the elements of A and b o 
are the elements of the inverse of A. This will result in a 
speeding up of the optimization process with a factor 
equal to the number of parameters refined. 

We then hope to be able to obtain more information 
on the essence of the term 'quality of the determinant'. 
Optimization of a 30 x 30 determinant will be a 
matter of minutes instead of hours. We hope this will 
enable us to tackle structures which have up to now 
eluded solution by direct methods. Our aim is to 
construct a determinant for a given structure, which 
after optimization contains enough correct phase 
information to calculate an E map directly, without 
resorting to the tangent formula. 

Our gratitude is owed to Professor C. Romers for his 
continuing stimulating interest, and to Dr J. van der 
Griend for his helpful suggestions concerning the 
mathematics of the optimization process. The calcula- 
tions were performed on the 370/I 58 IBM computer of 
the Central Computing Centre of Leiden University 
and on the CDC 6600 computer of the ECN in Petten. 
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